Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Du-Xia Cao, ${ }^{\text {a }}{ }^{*}$ Guo-Zhong Li, ${ }^{\text {a }}$ Gang Xue, ${ }^{\text {b }}$ Wen-Tao Yu ${ }^{\text {b }}$ and Zhi-Qiang Liu ${ }^{\text {b }}$

${ }^{\text {a }}$ College of Materials Science and Engineering, Jinan University, Jinan 250022, Shandong Province, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong Province, People's Republic of China

Correspondence e-mail: duxiacao@ujn.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.049$
$w R$ factor $=0.145$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(E)-3-(9-Ethyl-9H-carbazol-3-yl)-1-(2-hydroxy-phenyl)prop-2-en-1-one

In the crystal structure of the title compound, $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2}$, the molecular backbone is nearly planar, with a dihedral angle of $11.58(12)^{\circ}$ between the planes of the carbazole and benzene groups.

Comment

In recent years, considerable interest has been devoted to the synthesis and study of substituted chalcones because of their roles as fluorescent probes (Jiang et al., 1994) and as precursors in the biological formation of flavonoids (Nel et al., 1998), and their potential nonlinear optical properties (Wang \& Wu, 1994). In particular, the chalcone derivatives with typical $D-$ $\pi-A$ mode have been reported to exhibit intense fluorescence properties. For example, $4^{\prime \prime}$-dimethylaminochalcone (DMAC) has been reported to be a potential chemosensor (DiCesare \& Lakowicz, 2000) when it is substituted by different groups, since its fluorescent properties can be altered by different surrounding conditions. In our previous work, the structure of 2'-hydroxy-DMAC has been reported (Liu et al., 2002). To further understand the structure-property relationship, we synthesized a new DMAC analog with N -ethylcarbazolyl as electron-donor group. We report here the crystal structure of the title compound, (I).

(I)

The molecular structure of (I), along with the atomnumbering scheme, is shown in Fig. 1. The molecular backbone is nearly planar, as indicated by the dihedral angle of $11.58(12)^{\circ}$ between the planes of the carbazole and benzene groups. The central propenone group, C15-C17/O1, is planar and coplanar with the carbazole group [dihedral angle 2.94 (9) ${ }^{\circ}$], suggesting some π conjugation between the groups. The hydroxybenzoyl moiety is also nearly planar [maximum displacement from the least-squares plane is 0.052 (3) \AA for C17], as a result of the presence of some π conjugation and an intramolecular $\mathrm{O} 2-\mathrm{H} \cdots \mathrm{O} 1$ hydrogen-bond interaction.

In the crystal structure, the molecules are assembled into a herringbone pattern (Fig. 2). The packing can be described as

Received 21 February 2005
Accepted 7 March 2005
Online 18 March 2005
consisting of alternate layers perpendicular to the c axis, in which the molecules are parallel and arranged in a head-to-tail manner, with a separation of about $3.38 \AA$, indicating the presence of some π stacking interaction. The molecules of adjacent layers are nearly perpendicular and arranged in a head-to-head manner.

Experimental

A mixture of 2^{\prime}-hydroxyacetophenone ($1.36 \mathrm{~g}, 0.01 \mathrm{~mol}$) and NaOH $(0.48 \mathrm{~g}, 0.012 \mathrm{~mol})$ was dissolved in ethanol, and then N-ethyl-carbazole-3-aldehyde ($2.2 \mathrm{~g}, 0.01 \mathrm{~mol}$) in ethanol was added dropwise with stirring. The mixture was heated to reflux for 2 h until a substantial precipitate formed. The precipitate was filtered off and washed twice with ethanol to give the final product. Orange crystals of the title compound, which were suitable for X-ray analysis, were obtained by recrystallization from acetonitrile.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2}$

$M_{r}=341.39$
Monoclinic, $P 2_{1} / c$
$a=8.9637$ (9) А
$b=24.689(3) \AA$
$c=9.0990(9) \AA$
$\beta=117.788$ (6) ${ }^{\circ}$
$V=1781.5(3) \AA^{3}$
$Z=4$
$D_{x}=1.273 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 41 reflections
$\theta=5.1-12.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, orange
$0.58 \times 0.34 \times 0.20 \mathrm{~mm}$

Data collection

Bruker P4 diffractometer
ω scans
Absorption correction: ψ scans (XSCANS; Bruker, 1996)
$T_{\text {min }}=0.872, T_{\text {max }}=0.983$
4385 measured reflections
3491 independent reflections
1769 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.025 \\
& \theta_{\max }=26.0^{\circ} \\
& h=-11 \rightarrow 1 \\
& k=-1 \rightarrow 30 \\
& l=-10 \rightarrow 11 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: } 1 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.145$
$S=0.95$
3491 reflections
236 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0674 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.026(2)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

C5-C6	$1.408(3)$	C13-C15	$1.454(3)$
C5-C10	$1.441(3)$	C15-C16	$1.328(3)$
C6-N1	$1.388(3)$	C16-C17	$1.457(3)$
C8-N1	$1.467(3)$	C17-O1	$1.250(3)$
C9-N1	$1.378(3)$	C17-C18	$1.471(3)$
C9-C10	$1.412(3)$	C20-O2	$1.347(3)$
C6-C5-C10	$106.38(19)$	O1-C17-C16	$119.8(2)$
N1-C6-C5	$109.15(19)$	O1-C17-C18	$119.5(2)$
N1-C9-C10	$109.05(19)$	C16-C17-C18	$120.6(2)$
C9-C10-C5	$106.82(19)$	C9-N1-C6	$108.59(18)$
C16-C15-C13	$127.7(2)$	C9-N1-C8	$125.8(2)$
C15-C16-C17	$122.9(2)$	C6-N1-C8	$125.5(2)$

Figure 1
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
Packing diagram for the title compound, viewed along the c axis. H atoms have been omitted.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1$	0.82	1.78	$2.511(3)$	148

After their successful location in a difference map, all H atoms were positioned geometrically and allowed to ride on their attached atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aryl, CH and $\mathrm{CH}_{2} \mathrm{H}$ atoms, and $1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ for OH and $\mathrm{CH}_{3} \mathrm{H}$ atoms.

Data collection: XSCANS (Bruker,1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the Doctor Startup Fund of Jinan University.

organic papers

References

Bruker (1996). XSCANS. Version 2.2. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA
DiCesare, N. \& Lakowicz, J. R. (2000). Tetrahedron Lett. 43, 2615-2618.

Jiang, Y. B., Wang, X. J. \& Lin, L. (1994). J. Phys. Chem. 98, 12367-12372.
Liu, Z. Q., Fang, Q., Yu, W. T., Xue, G., Cao, D. X. \& Jiang, M. H. (2002). Acta Cryst. C58, o445-o446.
Nel, R. J. J., Van Heerden, P. S., Van Rensburg, H. \& Ferreira, D. (1998). Tetrahedron Lett. 39, 5623-5626.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, P. F. \& Wu, S. K. (1994). J. Lumin. 62, 33-39.

